Open Problem:

Polynomial linearly-convergent method for geodesically
convex optimization?

Chris Criscitiello Institute of Mathematics, EPFL = g
David Martinez-Rubio Zuse Institute Berlin and Technische Universitit
Nicolas Boumal Institute of Mathematics, EPFL Z I B




Lipschitz g-convex optimization

min f(x), D = B(xper,7) T M
X€D



Lipschitz g-convex optimization

min f(x), D = B(xper,7) T M
X€ED

M is a d-dimensional Riemannian manifold with |curvature| < K



Lipschitz g-convex optimization

min f(x), D = B(xper,7) T M
X€ED

M is a d-dimensional Riemannian manifold with |curvature| < K

f:D — Ris geodesically convex ( ):
» The 1D fctt — f(y(t)) is convex for any geodesic y in D



Lipschitz g-convex optimization

min f(x), D = B(xper,7) T M
X€ED

M is a d-dimensional Riemannian manifold with |curvature| < K

f:D — Ris geodesically convex ( ):
» The 1D fctt — f(y(t)) is convex for any geodesic y in D

f:D —> Ris M-
e |f(x) —f(y)| < Mdist(x,y),forallx,y € D
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Ellipsoid method

min f(x), D = B(xper,7) T M
X€D
If M = R%, amounts to Lipschitz optimization. Full convexity not
needed.
Ellipsoid method: iterative x;, = xp1,
p ke 7 ket Just need halfspace at
maintains ellipsoids E, 1 C Ej each iteration.
Two key properties:
* (Linear convergence) uses at most to

find a point with target accuracy ¢, and

* (Polynomial per-query complexity) requires only
Xk
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f:D — Ris g-convex and Lipschitz

Q: Is there a first-order deterministic algorithm with the following properties?

* (Linear convergence) uses at most to
find a point with target accuracy ¢, and

* (Polynomial per-query complexity) requires only
?
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Open Problem

Q: Is there a first-order deterministic algorithm with the following properties?

* (Linear convergence) uses at most to
find a point with target accuracy ¢, i.e.,, f(x) — f* < € - Mr, and

* (Polynomial per-query complexity) requires only
?

Answer should be YES, right?

 Partial solution: the case of constant curvature (hyperbolic spaces, hemispheres)
* No information-theoretic bottleneck (centerpoint method, Rusciano’19)

Note: Such algorithms exist under additional assumptions (strong g-convexity,
smoothness, 2"d-order robustness) [Zhang & Sra’16, Allen-Zhu et al’18, Hirai et al.23]
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Motivations

Ellipsoid method of fundamental theoretical importance in convex opt

Computing geometric median
* computational anatomy (Fletcher et al.' 09)
* phylogenetics (Bacak’'14)

—

Operator scaling (Gurvits'04, Burgisser’19, ...) Pos def matrices
* robust covariance estimation with affine-
 matrix normal models i invariant metric,
» variant on polynomial identity testing, etc. M = SL(n)/SO(n)
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Suffices to solve this problem with justr =
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Define R = —=, X9 = Xref,
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&l

Suffices to solve this problem with justr = —

Define R = —=, X9 = Xref, Algo

Fork =0,..,T = [{log(e™))]

€
X = —approx solution of subproblem min
k+1 = 7-app p seoin f

=l

B(xq, R
(X0, R) e MR’23, Theorem 7

* Works for any
Riemannian Manifold!
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[ ] . 1 - E
e — . _ < €
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Assume M = H? is a hyperbolic space (constant curvature —1)

Key tool: with base point xj, is a diffeomorphism
¢ H* -» B(0,1) c R?
with ¢(x;) = 0 and which

{x € H*: (g,log,(x)) <0} & {x € B(0O,1): §" (X — 7) < 0}

X=¢rx),y = dr(y)
g = dor(x)[g]



Constant curvature

[ ] . 1 - E
e — . _ < €
er(IxII;%)HDf(X), with R = Goal: f(xx41) E(;Eg)lmf < MR

Assume M = H? is a hyperbolic space (constant curvature —1)

Key tool: with base point xj, is a diffeomorphism
¢ H* -» B(0,1) c R?
with ¢(x;) = 0 and which

{x € H*: (g,log,(x)) <0} & {x € B(0O,1): §" (X — 7) < 0}

Geodesics map of H? given by Beltrami Klein model (explicit formula)
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Constant curvature

Pull back Riemannian problem to Euclidean space via geodesic map

min __ (f o ¢;*) (&)

xeB(0,R)N¢px ' (D)

Solve transformed subproblem with usual ellipsoid method!

Why works?

* Ellipsoid method just needs halfspaces

* Use geodesic map to map hyperbolic halfspaces (from g-convexity) to
Euclidean halfspaces

« R = 1/+/K is small, so the distortion is small (e.g., for Lipschitzness)

Takes 0(d?log(e™1)) queries, each requiring 0(d?) arithmetic operations.
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How to go beyond constant curvature?

: The only Riemannian manifolds which admit
geodesic maps to Euclidean space are those of constant curvature.

Maybe replace geodesic maps with exponential map and use comparison
theorems? Not clear ...
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Other possible approaches

Difficulty: there is no convenient notion of ellipsoid on general manifolds

One idea: Maintain ellipsoids in tangent spaces.

How to ellipsoids between tangent spaces?
xk+1 = eprk(vk)

Tka Txk+1M
7?7
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introduced a way of transferring balls between tangent spaces.

It is not clear how to generalize their results to ellipsoids.
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min f(x), D = B(xper,7) T M
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If M = R, amounts to Lipschitz optimization.
Ellipsoid method:
E, E; is

’ containing
intersection of



