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Ellipsoid	method
min!∈# $ % , ' = )* %$%&, + ⊂ ℳ

If	ℳ = ℝ',	amounts	to	Lipschitz	convex optimization.

Ellipsoid	method:	iterative	%( → %()*,	
maintains	ellipsoids	<()* ⊂ <(

Two	key	properties:

• (Linear	convergence)	uses	at	most	= poly . log C+* subgradient queries	to	
find	a	point	with	target	accuracy	C,	and	
• (Polynomial	per-query	complexity)	requires	only	=(poly(.)) arithmetic	operations	
per	query	%(



Ellipsoid	method
min!∈# $ % , ' = )* %$%&, + ⊂ ℳ

If	ℳ = ℝ',	amounts	to	Lipschitz	convex optimization.

Ellipsoid	method:	iterative	%( → %()*,	
maintains	ellipsoids	<()* ⊂ <(

Two	key	properties:

• (Linear	convergence)	uses	at	most	= poly . log C+* subgradient queries	to	
find	a	point	with	target	accuracy	C,	and	
• (Polynomial	per-query	complexity)	requires	only	=(poly(.)) arithmetic	operations	
per	query	%(



Ellipsoid	method
min!∈# $ % , ' = )* %$%&, + ⊂ ℳ

If	ℳ = ℝ',	amounts	to	Lipschitz	convex optimization.

Ellipsoid	method:	iterative	%( → %()*,	
maintains	ellipsoids	<()* ⊂ <(

Two	key	properties:

• (Linear	convergence)	uses	at	most	= poly . log C+* subgradient queries	to	
find	a	point	with	target	accuracy	C,	and	
• (Polynomial	per-query	complexity)	requires	only	=(poly(.)) arithmetic	operations	
per	query	%(



Ellipsoid	method
min!∈# $ % , ' = )* %$%&, + ⊂ ℳ

If	ℳ = ℝ',	amounts	to	Lipschitz	convex optimization.

Ellipsoid	method:	iterative	%( → %()*,	
maintains	ellipsoids	<()* ⊂ <(

Two	key	properties:

• (Linear	convergence)	uses	at	most	= poly . log C+* subgradient queries	to	
find	a	point	with	target	accuracy	C,	and	
• (Polynomial	per-query	complexity)	requires	only	=(poly(.)) arithmetic	operations	
per	query	%(



Ellipsoid	method
min!∈# $ % , ' = )* %$%&, + ⊂ ℳ

If	ℳ = ℝ',	amounts	to	Lipschitz	convex optimization.

Ellipsoid	method:	iterative	%( → %()*,	
maintains	ellipsoids	<()* ⊂ <(

Two	key	properties:

• (Linear	convergence)	uses	at	most	= poly . log C+* subgradient queries	to	
find	a	point	with	target	accuracy	C,	and	
• (Polynomial	per-query	complexity)	requires	only	=(poly(.)) arithmetic	operations	
per	query	%(

Full	convexity	not	
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Open	Problem
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!:# → ℝ is	g-convex	and	Lipschitz

Is	there	a	first-order	deterministic	algorithm	with	the	following	properties?

• (Linear	convergence)	uses	at	most	= poly ., F log C+* subgradient queries	to	
find	a	point	with	target	accuracy	C,	and	
• (Polynomial	per-query	complexity)	requires	only	=(poly(., F)) arithmetic	
operations	per	query?
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Our	contribution:

• Partial	solution:	the	case	of	constant	curvature	(hyperbolic	spaces,	hemispheres)
• Get	others	interested	in	it!
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Motivations
Ellipsoid	method	of	fundamental	theoretical	importance	in	convex	opt

Computing	geometric	median
• computational	anatomy	(Fletcher	et	al.’09)
• Phylogenetics	(Bacak’14)

Operator	scaling	(Gurvits’04,	Burgisser’19,	…)
• robust	covariance	estimation
• matrix	normal	models
• variant	on	polynomial	identity	testing,	etc.
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)* %., M • MR’23,	Theorem	7
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Assume	ℳ = ℍ' is	a	hyperbolic	space	(constant	curvature	−1)

Key	tool:	Geodesic	map	with	base	point	%( is	a	diffeomorphism	
S(: ℍ' → * 0,1 ⊂ ℝ'

with	S %( = 0 and	which	maps		halfspaces in	ℍ' to	halfspaces in	* 0,1 ⊂ ℝ'

% ∈ ℍ': U, log6 % ≤ 0 ↔ W% ∈ * 0,1 : WU7 W% − WX ≤ 0

Geodesics	map	of	ℍ' given	by	Beltrami	Klein	model	(explicit	formula)
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Constant	curvature
Pull	back	Riemannian	problem	to	Euclidean	space	via	geodesic	map

min
8!∈2 ., 94 ∩:!"# #

$ ∘ S(+* W%

Solve	transformed	subproblem	with	usual	ellipsoid	method!

Why	works?

• Ellipsoid	method	just	needs	halfspaces
• Use	geodesic	map	to	map	hyperbolic	halfspaces (from	g-convexity)	to	
Euclidean	halfspaces

• M = 1/ 7 is	small,	so	the	distortion	is	small	(e.g.,	for	Lipschitzness)

Takes	= .; log C+* queries,	each	requiring	= .; arithmetic operations.
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How	to	go	beyond	constant	curvature?
Beltrami’s	theorem:	The	only	Riemannian	manifolds	which	admit	
geodesic	maps	to	Euclidean	space	are	those	of	constant	curvature.

Maybe	replace	geodesic	maps	with	exponential	map	and	use	comparison	
theorems?		Not	clear	…
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Other	possible	approaches
Difficulty:	there	is	no	convenient	notion	of	ellipsoid	on	general	manifolds

One	idea:	Maintain	ellipsoids	in	tangent	spaces.
How	to	transfer	ellipsoids	between	tangent	spaces?

Kim	and	Yang’22	introduced	a	way	of	transferring	balls	between	tangent	spaces.
It	is	not	clear	how	to	generalize	their	results	to	ellipsoids.
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